Conclusions
Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.
Collection of links.
the study analyzed 24 commercial essential oils, including 12 with claims of being “natural” or related terms, such as organic, 100% pure, or plant-based. Results identified 595 VOCs emitted from the 24 essential oils, representing 188 different VOCs. The most common VOCs emitted were alpha-pinene, limonene, acetone, linalool, alpha-phellandrene, beta-myrcene, and camphene. Among the 589 VOCs identified, 124 VOCs, representing 33 different VOCs, are classified as potentially hazardous. All natural and regular essential oils emitted one or more potentially hazardous VOCs, such as acetaldehyde, acetone, and ethanol. Toluene was also found in 50% of essential oils. Moreover, for the prevalent VOCs classified as potentially hazardous, no significant difference was found between regular and natural essential oils.
34k people studied: vaccines prevent short-term complications & severe disease, but long covid risk is the same between vaccinated and unvaccinated people.
"long covid" is looking a lot like ME/CFS.
Covid-19 impairs monocyte function, making future colds worse and future blood clots more likely.
Even if cats understand what we’re saying, de Mouzon says, “they have a right to choose if they don’t want to interact.”
combination of guanfacine and N-acetylcysteine (NAC), an anti-oxidant also used for the treatment of TBI. The combined therapy, they found, was successful in relieving brain fog for their small cohort of patients.
Kacena diverted her work to SARS-CoV-2 after several studies from across the country revealed that those dying from the coronavirus had high numbers of megakaryocytes built up in various organs, which causes significant issues.
Megakaryocytes are among Kacena’s areas of expertise; she studies their relation to bone regeneration and fracture healing.
The Kacena Lab began using transgenic mouse models to further study the coronavirus and its relation to megakaryocytes and bone health. It was the first lab in Indiana and only one of a handful of labs in the United States to start conducting coronavirus-related experiments at this level.
Megakaryocytes are large bone marrow cells that produce platelets needed for blood clotting. The autopsies of those who died from COVID-19 have revealed significant megakaryocyte build-ups in the heart, lungs and brain. The lab’s goal was to discover whether regulating megakaryocytes could change the severity of COVID-19 and decrease its morbidity and mortality.